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ABSTRACT

Upon heat exposure, the thermoregulatory system evokes reflex increases in sweating and skin blood flow
responses to facilitate heat dissipation and maintain heat balance to prevent the continuing rise in core
temperature. These heat dissipating responses are mediated primarily by autonomic and cardiovascular
adjustments; which, if attenuated, may compromise thermoregulatory control. In patients with heart
failure (HF), the neurohumoral and cardiovascular dysfunction that underpins this condition may poten-
tially impair thermoregulatory responses and, consequently, place these patients at a greater risk of
heat-related illness. The aim of this review is to describe thermoregulatory mechanisms and the factors
that may increase the risk of heat-related illness in patients with HF. An understanding of the mechanisms
responsible for impaired thermoregulatory control in HF patients is of particular importance, given the
current and projected increase in frequency and intensity of heat waves, as well as the promotion of
regular exercise as a therapeutic modality. Furthermore, novel therapeutic strategies that may improve
thermoregulatory control in HF, and the clinical relevance of this work in this population will be
discussed. (J Cardiac Fail 2017;23:621–627)
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Although healthy individuals have a high capacity to tol-
erate environmental heat stress,1 individuals with heart failure
(HF) appear particularly susceptible to illness during envi-
ronmental heat exposure. This is seen in a marked increase
in illness and death during heat waves and in the summer months
for these patients.2–5 Environmental heat exposure evokes reflex
increases in sweating and skin blood flow (SkBF) to facili-
tate heat dissipation.6,7 These heat-dissipating responses are

mediated by autonomic and cardiovascular adjustments; if these
adjustments are attenuated, thermoregulatory control can be
compromised. In HF, the well-documented alteration in au-
tonomic and cardiovascular function8,9 has the potential to impair
thermoregulatory responses. Moreover, the pharmacological
management of HF patients may further compromise ther-
moregulatory responses. Consequently, patients with HF may
be at a higher risk of heat-related illness when exposed to
hot climates, particularly during exercise. The purpose of this
review is to describe normal thermoregulatory mechanisms
and how they may be altered in HF, and the factors that
may increase the risk of heat-related illness in these patients.
Additionally, therapeutic strategies that may improve ther-
moregulatory control in this population are discussed.

Thermoregulatory Control

The primary function of the human thermoregulatory system
is to maintain core body temperature within safe limits. When
humans are exposed to heat stress (ie, elevated environmental
temperatures, physical activity, or a combination of both), the
thermoregulatory system engages a number of physiological
mechanisms to maintain heat balance. That is, the rate of
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metabolic heat production is balanced by the rate that heat is
dissipated from the skin surface to the surrounding environ-
ment through a combination of dry (conduction, convection,
and radiation) and evaporative heat exchange.10,11 Heat balance
can be easily disrupted, particularly during exercise and/or
exposure to warm environments, because of elevations in met-
abolic heat production and/or a reduction (or even reversal)
of dry heat transfer. The change in tissue temperature occur-
ring because of the resultant additional heat energy stored
inside the body provides thermal afferent impulses to the central
nervous system.12 Specifically, nuclei of the anterior (preop-
tic region) hypothalamus integrate thermal afferent information
from central (core) and peripheral (skin) thermoreceptors, and
subsequently send efferent signals via sympathetic pathways
to appropriate effector organs to initiate (onset threshold)
sustained increases in sweating and SkBF. These responses
increase proportionally to the rise in core temperature, with
further modification from skin temperature (thermosensitivity).
Modifications of the onset threshold and thermosensitivity
are indicative of central and peripheral modulations of ther-
moregulatory control.13–15 In fact, the onset threshold and
thermosensitivity of heat-dissipating responses represent the
only way that the physiology of body temperature control can
be examined.

During environmental and/or exercise heat stress, core tem-
perature continues to rise if sweating and SkBF responses do
not facilitate heat dissipation at the rate required to balance
heat production.16 Prolonged exposure to heat strain can in-
crease the likelihood of heat-related illness.16 Major heat-
related conditions include heat stroke, which is characterized
as a severe elevation in body temperature that causes body
tissue and central nervous system dysfunction,17,18 all result
from insufficient heat dissipation from the body. Decreases
in thermoregulatory capacity may be attributed to a combi-
nation of factors including changes in sweating, SkBF,
and cardiovascular function.19–21 Therefore, an optimally
functioning sudomotor (sweating) and cutaneous vasodilatory
system is necessary for humans to effectively respond to
thermal challenges.

Sweating Responses in HF Patients

In a seminal study, Morgan and Nadas22 reported that sweat-
ing was greater at rest in HF patients compared with controls.

Moreover, recent studies suggest that HF patients have similar
sweating responses to controls when exposed to passive whole-
body heating23,24 (Table 1). Although these findings suggest
that temperature sensing, cholinergic innervation, and sudo-
motor function are preserved in HF, it must be acknowledged
that differences in biophysical properties associated with
metabolic heat production and body morphology (ie, mass
and surface area) were not controlled in these studies. Given
that biophysical differences are known to independently in-
fluence sweating responses,28–32 and that the aforementioned
studies did not account for these differences, it is difficult to
determine whether the reported findings22–24 are due to HF
per se or are ascribed to between-group biophysical differ-
ences. Hence, we believe thermoregulatory-induced sweating
in HF is an area that requires further examination.

Skin Blood Flow Responses in HF Patients

A common finding among studies examining thermoregu-
lation in the context of HF to date is that HF patients appear
to demonstrate impaired heat-induced increases in SkBF
compared with controls23–26 (Table 1). Although the mecha-
nisms responsible for impaired SkBF in HF are not yet well
understood, it may be argued that the compensatory activa-
tion of neurohumoral mechanisms that increase with severity
of the condition at least partially contribute to the blunted
heat-induced rise in SkBF in HF patients. Indeed, the renin-
angiotensin-aldosterone system and the sympathetic nervous
system are both chronically activated in HF.8,9 Given these
observations, the attenuated heat-induced cutaneous vasodi-
lation (and accompanying changes in SkBF) in HF may be
due to enhanced vasoconstrictor activity. Moreover, the at-
tenuated SkBF response in HF may be partially explained by
impaired nitric oxide (NO)-dependent vasodilation.26 The fact
that HF results in endothelial dysfunction33,34 and reduced vas-
cular responsiveness to NO35,36 lend some support to this
hypothesis. Although these findings suggest that HF pa-
tients demonstrate peripheral alterations in heat-induced SkBF
responses, to date no study has examined the onset thresh-
old of SkBF in response to a thermal challenge in this
population. Therefore, it cannot be determined if SkBF re-
sponses in patients with HF are impaired purely from a
peripheral perspective, as peripheral modulations can only be
detected when changes in the thermosensitivity exist without

Table 1. A Summary of Findings From Key Studies to Date Examining Thermoregulation in the Context of HF

Authors Environment/Mode Sample Size

Thermoregulatory Responses*

Sweating Skin Blood Flow

Morgan and Nadas22 Pilocarpine iontophoresis CON = 17; HF = 14 ↑ —
Zelis et al25 Cycling exercise in a thermo-neutral laboratory CON = 12; HF = 9 — ↓
Cui et al23 Water-perfused suit (water temperature ~46°C) CON = 14; HF = 14 ↔ ↓
Green et al26 Whole-body chamber heating at 38°C CON = 7; HF = 7 — ↓
Cui et al24 Water-perfused suit (water temperature ~46°C) CON = 9; HF = 9 ↓ ↓
Balmain et al27 Cycling exercise in a 30°C laboratory environment CON = 8; HF = 10 ↔ ↓

*Arrows indicate the magnitude of response in heart failure patients (HF) compared with age- and gender-matched healthy controls (CON), where ↔ in-
dicates that there was no significant difference in the response between HF and CON; ↑ indicates a significantly greater increase in HF compared with CON;
↓ indicates a significantly smaller increase in HF compared with CON; — indicates that the response was not assessed.
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changes in the onset threshold.37 Furthermore, although de-
finitive studies during exercise are yet to be completed, the
current evidence would imply that internal heat distribution
during periods of environment heat stress might be compro-
mised in this population.

Effect of Pharmacotherapy on Thermoregulatory
Control in HF Patients

Studies examining thermoregulatory control in HF to date
have included patients who continued with standard care
procedures 22–27,38; hence, it cannot be ruled out that thermo-
regulatory responses in HF may be influenced by concurrent
use of medication. Beta-blockade is a standard, first-line
therapy for HF and, although beta-blockers do not appear to
influence sweating in HF, the use of this medication may pos-
sibly contribute to the lower rise in SkBF previously observed
in these patients. Indeed, beta-blockers may have attenu-
ated the heat-induced increase in cardiac output, thereby
limiting the amount of blood that can be redistributed to the
skin. Consistent with this suggestion is that although young
healthy individuals taking beta-blockers exhibit preserved
sweating responses during thermal challenges, SkBF re-
sponses are attenuated.39,40

In addition to beta-blockers, diuretics may also influence
thermoregulation. Diuretics prevent the resorption of sodium
and potassium in the distal tubules of the kidney, leading
to a decrease in plasma volume.41 In healthy individuals,
a reduction in plasma volume has been shown to impair
thermoregulatory increases in SkBF.42 As such, it may be
argued that taking diuretics as part of a holistic treatment strat-
egy for HF may impair thermoregulatory control in these
patients during periods of heat stress. In a classic study, Nadel
et al43 demonstrated that the core temperature onset thresh-
old of SkBF was increased, which resulted in a lower thermo-
effector output for a given core temperature when healthy
individuals were dehydrated by ~3% of their individual total
body mass. The fact that fluid status is an extremely fine
balance in HF patients may predispose these patients to heat-
related illness should they become dehydrated, particularly
during an exercise challenge.

Thermoregulatory Responses During Exercise in
HF Patients

In addition to pharmacotherapy, exercise training is a well-
recognized therapeutic modality in the management of HF44,45

and has been shown to decrease symptoms, improve exercise
capacity, and quality of life, and likely improve morbidity and
mortality.46 Accordingly, a prescribed exercise training program
is now recommended standard practice for patients with HF.44,45

Recently, Benda et al38 assessed core and skin tempera-
ture responses in HF patients compared with controls during
prolonged exercise in a thermo-neutral environment (ie,
~22°C). Core temperature responses during exercise were
similar between the 2 groups; however, an attenuated rise in

skin temperature was documented in HF compared with con-
trols. The authors concluded that the attenuated rise in skin
temperature in HF may be reflective of an inability to in-
crease SkBF, which serves to increase the convective transfer
of heat from the body core to the periphery and potentially
increase skin temperature. Indeed, the lower skin tempera-
ture in HF would have reduced dry heat exchange from the
skin to the surrounding environment. Unfortunately, this
study was not performed during exercise in the heat and, as
such, it is difficult to translate these findings to a likely sce-
nario of HF patients performing exercise outside of climate-
controlled facilities—which may in fact take place outdoors
in a warm environment, particularly during the summer
months. Moreover, this study failed to take into account dif-
ferences in biophysical properties between HF and control
participants,28–32 and sweating and SkBF responses were not
measured. Therefore, the subsequent conclusions that can be
drawn from the reported data regarding thermoregulatory
control during exercise in HF patients are limited.38

More recently, we have demonstrated that thermoregula-
tory responses in HF patients differ from controls during
exercise in a warm environment.27 In this study, a fixed rel-
ative exercise intensity (% peak oxygen uptake) was used,
resulting in a much lower rate of metabolic heat production
per unit mass in HF than controls; however, core tempera-
ture responses were similar between groups. These results
suggest that HF patients appear to have a disrupted ability to
regulate core temperature during exercise in a warm envi-
ronment. We also found that sweating responses (relative to
the evaporative requirements for heat balance) were similar
between the 2 groups, whereas the rise in cutaneous vascular
conductance and the thermosensitivity of this response was
blunted in HF compared with controls (Fig. 1). These results
suggest that HF patients are potentially limited in managing
a thermal load secondary to impaired SkBF responses. Given
our study used a protocol based on a fixed relative intensity,
we suggest future studies should look to prescribe exercise
that elicits a fixed rate of metabolic heat production in watts
per kilogram28 to assess thermoregulatory control in HF patients.

Potential Strategies to Enhance Thermoregulatory
Control in HR Patients

In the preceding sections, we have identified that,
although HF patients appear to exhibit preserved sweating
responses, heat-induced rises in SkBF are lower compared
with their age-matched healthy counterparts. As such, it is
within reason to suggest that HF patients are limited in their
ability to manage heat content secondary to poorer circula-
tion to the skin. Based on evidence demonstrating that
endothelium-dependant vasodilation is impaired in HF,33–36

we suspect that impaired vascular endothelial function may
be a key contributor to reduced SkBF and thus, thermoregu-
latory control, in this population.

Although acute exercise transiently increases metabolic heat
production and may increase the risk of heat-related illness
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in HF patients, regular exercise training is known to improve
several physiological parameters critical to thermoregulation.
Although the onset threshold of heat-dissipating responses
have not been examined in response to exercise training in
HF, exercise training has been shown to improve cardiac
function47–49 and improve vascular endothelial function and
accompanying changes in blood flow redistribution50–52 in this
population. Additionally, exercise training has been shown
to attenuate an overactive sympathetic nervous system52–54 in
these patients. As such, one may speculate that exercise train-
ing may improve thermoregulatory control by augmenting
heat-induced SkBF responses and thus potential internal
heat distribution in HF patients. However, this remains to be
examined.

Similar to exercise training, repeated exposure to heat (ie,
acclimation) reduces the absolute core temperature onset
threshold of sweating and SkBF, resulting in the increase of
thermo-effector output for a given core temperature.55,56 Ad-
ditionally, blood volume increases through plasma volume
expansion, which allows for a larger heat-induced rise in
cardiac output to facilitate a greater redistribution of blood
to the skin and optimize heat content management among pe-
ripheral tissues.57,58 Based on the evidence regarding the effects
of heat acclimation in the context of HF, several studies have
shown that acute and chronic exposure to heat stress via sauna
therapy improves cardiac, autonomic, and circulatory func-
tion in HF patients.59–64

Although these studies describe the cardiovascular and au-
tonomic benefits associated with this intervention in HF patients,
it must be acknowledged that no study to date has described
the impact of repeated sauna therapy on thermo-effector func-
tion in this population. It may be argued however, based on
the previous findings, that repeated passive heat exposure may
improve thermoregulatory control in HF patients. Indeed, sauna
therapy–induced increases in cardiac output combined with
improved vascular endothelial function may allow for a greater
volume of blood to circulate through the cutaneous vasculature

to optimize the management of changes in body heat content.
Accordingly, a greater thermoregulatory-mediated rise in SkBF
may serve to increase dry heat exchange, secondary to higher
skin temperatures, at a given ambient temperature in HF pa-
tients following repeated sauna therapy.

Approximately 95% of the total rise in SkBF in response
to heat stress is attributed to active cutaneous vasodilation,
which predominately occurs via NO-dependent mechanisms.65

Given that HF patients demonstrate impaired NO-dependent
vasodilation during environmental heat exposure,26 the NO
pathway may be an important target for potential strategies
aimed at improving vascular function in this population. NO
formation is dependent on the presence of tetrahydrobiopterin
(BH4),66,67 which is required to maintain the structure of NO
synthase for the production of NO.68 In conditions where BH4

bioavailability is limited, NO synthase becomes structurally
unstable and produces superoxide rather than NO.69 Super-
oxide is known to oxidize BH4, which further contributes to
increased oxidative stress and vascular dysfunction.67 Col-
lectively, decreases in BH4 bioavailability and subsequent
increases in oxidative stress may contribute to attenuated NO-
dependent vasodilation in HF patients, thereby negatively
affecting peripheral, including SkBF and thus, heat content
distribution and possibly even heat loss capacity.

Several studies have reported that dietary nitrate
supplementation increases NO bioavailability in healthy
middle-aged and older individuals and in those with hyper-
cholesterolemia and peripheral artery disease. These studies
demonstrated that nitrate supplementation serves to improve
vascular endothelial function70–74 and reduce levels of oxi-
dative stress75,76 via NO-dependent mechanisms. Based on these
findings, it may be argued that nitrate supplementation may
serve to enhance NO-dependent cutaneous vasodilation and
therefore improve SkBF responses when individuals are
exposed to elevated environmental temperatures. Although this
is an intriguing hypothesis, nitrate supplementation in the
context of thermoregulatory control has not been studied.

Fig. 1. CVC values recorded at 10-minute intervals during exercise (A), and changes in CVC (B) in response to increases in Tb for HF and
CON participants. CON, control; CVC, forearm cutaneous vascular conductance; HF, heart failure; Tb, mean body temperature. Data are
mean ± standard error of the mean. *Significantly different between groups, P < .05. Adapted from Balmain et al.27
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A potentially more viable dietary intervention strategy aimed
at improving thermoregulatory control is folic acid supple-
mentation. Recent published work demonstrates that folic
acid and its active metabolite, 5-methyltetrahydrofolate, in-
creases vascular BH4 production in healthy older individuals
and in patients with metabolic and coronary artery disease.77–79

Data from these studies suggest that subsequent improve-
ments in vascular function and accompanying changes in
peripheral, including SkBF, with folic acid supplementation
are mediated through NO-dependent mechanisms. Given that
HF patients exhibit impaired circulation to the periphery,23–26

folic acid supplementation may serve to improve SkBF re-
sponses through NO-dependent mechanisms and, thus,
thermoregulatory control in this population.

In contrast to strategies aimed at increasing SkBF in HF
patients, an alternative approach to improving thermoregu-
latory control in this population would be to use strategies
that enhance sweating responses and, thus, evaporative heat
exchange. Because sweating responses appear to be pre-
served in HF patients, this may be an important consideration
if impairments in SkBF are sufficient to alter dry heat ex-
change from the skin surface to the surrounding environment.
It is well understood that the potential for evaporation is in-
creased substantially with increasing air movement.32,80,81 As
such, a simple and cost-effective cooling strategy to enhance
the evaporation of sweat during heat exposure is the use of
an electric fan.

Until recently, most public health guidance suggested that
electric fans are not effective in preventing heat-related illness
at ambient temperatures greater than ~35 to 37°C.82 This was
based on the assumption that the gradient for dry heat ex-
change is reversed (provided that the ambient temperature
was greater than skin temperature) and an increase in air
velocity (with the use of a fan) across the skin surface would
accelerate dry heat gain and consequently “accelerate body
heating.” However, evidence suggests that the use of elec-
tric fans when ambient temperature exceeds that of skin
temperature may need to be reconsidered.80 Indeed, Jay et al80

recently demonstrated that fans protect against cardiovascu-
lar and thermal strain in young and older healthy individuals
up to at least an ambient temperature of 42°C (irrespective
of relative humidity), which is much higher than the limit sug-
gested by the Centers for Disease Control and Prevention and
the World Health Organization.82 The increase in dry heat
gain associated with using electric fans during heat waves in-
creases the evaporative requirements for sweating to attain
heat balance. Consequently, sweating responses increase, and
the increase in air velocity (with a fan) further facilitates the
evaporation of sweat. As a result, this will lead to a higher
rate of net heat loss from the skin, which may serve to be
protective during heat stress despite a higher rate of convec-
tive heat gain.32 Because thermoregulatory sweating responses
appear to be preserved in those individuals with HF, the
use of an electric fan may be an effective cooling strategy—
even when the ambient temperature exceeds that of the skin;
however, further work in this area needs to be undertaken,
particularly in clinical populations.

Clinical Relevance

Impaired thermoregulatory responses should be consid-
ered in patients with HF because they may contribute to heat-
related illness and therefore adversely affect health outcomes
during everyday activities, particularly during bouts of hot
weather. Individuals should be made aware of their poten-
tial susceptibility to temperature extremes, and education
should be provided to address simple strategies to avoid over-
heating. Relevant advice may include wearing appropriate
clothing; ensuring access to electric fans where possible, par-
ticularly when performing indoor exercise activities; controlling
the ambient temperature and ventilating the home environ-
ment; timing activities to avoid extremes of temperature; and
undertaking activity modification for energy conservation.
Monitoring of fluid status should also be reviewed regularly
with the intent that requirements for fluid restrictions and use
of diuretics may change from season to season as tempera-
ture and patient activity varies.

With respect to physical activity, program attendance and
general participation in exercise are likely to be better if en-
vironmental issues do not pose a significant barrier. Although
current guidelines provide information on recommended
levels of physical activity with associated long- and short-
term outcomes,44,45 there are no recommendations regarding
the levels of physical activity that can be safely performed
in the heat. Exercise training should, where possible, be con-
ducted in air-conditioned or well-ventilated facilities, and this
should be a consideration when choosing venues to run such
programs. Similarly, the home environment should also be
considered when prescribing exercise to be undertaken outside
of a health facility. Exercise prescription may also need to
be modified if heat-related fatigue is problematic; as such,
exercise intensity and rest periods can be adapted accordingly.

Conclusion

Recent observations clearly show that HF patients are sus-
ceptible to heat-related illness. This increased susceptibility
appears to be mediated by diminished heat-induced in-
creases in SkBF. We suspect that impaired intrinsic vasodilator
pathways combined with a reduced cardiac reserve may con-
tribute to this response in these patients. Although theoretical
at this point, routine exercise, acclimation, and the use of
electric fans might be beneficial in protecting against heat-
related illness in patients with HF. Additional studies examining
mechanisms of temperature regulation in HF, as well as po-
tential therapeutic strategies to improve thermoregulatory
control in this population, are needed to optimize treatment
and management of these vulnerable patients when exposed
to heat stress.
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